Introduction: Circuit Board Protection Materials: Liquid Potting Materials

Hilde Goossens

- 1. Embedding process of electronic devices
- 2. Industry trends
- 3. Potting Material options
- 4. Overview potting systems
- 5. Application Techniques
- 6. Selecting the right product
- 7. Henkel Potting Materials Product line

Introduction

Introduction: Embedding processes of electronic devices

To isolate devices from generally degrading environmental and operational effects such as oxygen, moisture, heat and cold, dust, current leakage, corrosion, mechanical shock and vibration.

Methods Of Embedding

- Casting
- Potting
- Encapsulation
- Sealing
- Impregnation

Definition : Casting

"Method which consists of pouring a catalysed or hardenable liquid into a mould. The hardened cast part takes the shape of the mould, and the mould is removed for re-use."

Definition : Potting

"Method which consists of pouring a catalysed or hardenable liquid into a shell or housing which remains as an integral part of the unit."

Definition : Encapsulation

"Method of providing a protective coating or a thin shell around a component or assembly. A mould is used rather than a permanent container. When the mould is removed, the cured resin is the outside surface of part."

len

Definition : Sealing

"Sealing describes a method of providing a barrier on a surface or around the joint of the container which houses some devices."

Sealant may also be used to fill cracks, voids, vents holes in casts or potted parts. Sealant does not surround the device, the sealant may form the entire upper surface of the embedment, or it may be used to gasket a lid or caulk a joint.

Definition : Impregnation

"Method consisting of completely immersing a part in a liquid so that the interstices are thoroughly soaked and wetted ; usually accomplished by vacuum and/or pressure."

Industry Trends

Industry Trends

- Historically potting materials were used for impregnation of coils and consumer electronics
- Automotive electronics has rapidly transferred into this category with life critical applications
 - Air bag sensors
 - ABS modules
 - Oil sensors
 - Clutch sensors
 - Transmission control units
- Request for higher temperature resistant materials (up to 175-200°C)
- Request for higher chemical resistant materials:
 - Automotive fluids (ATF, oils and different fuels)
- Better heat dissipation = improved thermal conductivity

Potting Material Options

Liquid Potting Materials :

4 major constituents :

- Resin: different chemistries like epoxy, polyurethane, silicone
- Hardener (catalyst) : Amine, Amide, Dicy, Imidazole, Anhydride, ...
- Fillers
- Diluent / solvents

"A resin is a natural or synthetic compound that begins in a highly viscous state and hardens with treatment. Typically, it is soluble in alcohol, but not in water. The compound is classified in a number of different ways, depending on its exact chemical composition and potential uses."

"A hardener (catalyst) is a substance or mixture of substances that undergoes a reaction with a resin and is consumed in that reaction, becoming a part of the polymer backbone."

Epoxies

- >50 Epoxy Formulations
- Mix ratios: 1:1 to 20:1
- Mixed viscosity: 200 cP to >1M cP
- Hardness: 23 (A) to 95 (D)
- Gel time: 2 minutes to months
- Dk from: 3 to 7
- Df from: 0.01 to 0.09
- Dielectric Strength: up to 2000 volts/mil (20mil thickness)

RESINS	
Diglycidyl Ether of Bisphenol A	Most commonLong chainLow cost
Diglycidyl Ether of Bisphenol F	More expensive
Cycloaliphatic	More expensiveHigh performanceLow viscosity

Epoxy Hardeners/Catalysts

	Amines Aliphatic	Amines Aromatic	Polyamides	Anhydrides
Advantage	RT cure Good overall properties	Excellent chemical resistance High Tg	Good mixing ratio Good adhesion	Excellent high temperature performance Low exothermal Good chemical properties Long pot life
Disadvantage	High exothermal Poor mix ratio	Elevated temperature cure High exothermal	Poor chemical resistance Poor thermal resistance	Long cure schedule Dianhydrides are solid
Typical Max. Operating Temperatures,°C	105°C – 150°C (221 °F)	155 – 180°C (302-356 °F)	105°C (221 °F)	To 200°C (392 °F)
Typical Pot life, hrs.	0.5 – 0.75	8	2 – 3	20 hrs +
General Uses	Modules, small castings, adhesives	Solvent resistant apps, thermal cycling	Thermal cycling, low stress adhesive	Excellent electrical, module potting, coil potting

Urethanes

- >40 Urethane Formulations
- Mix ratios from: 1:1 to 1:7.7
- Mix viscosity from: 400 cP to 25,000 cP
- Hardness from: 60 (OOO) to 85 (D)
- Gel time from: 2 to 360 minutes @ 25°C
- Dk from: 3 to 7
- Df from: 0.01 to 0.2
- Dielectric Strength: up to 1200 volts/mil (20mil thickness)

Urethane resins

POLYOL	
Polyether's	
Polyoxypropylene glycol (PPG)	Most common type of polyol High cross-linking , thermoset urethanes
Polytetramethylene ether glycol (PTMEG)	Used when high strenght is required
Polybutadiene (PolyBD)	Very low moisture absorption
	Excellent tow temperatue flexibility
	Restricted for export
Polyesters	
Adipates	Excellent abrasion resistance and outdoor weatherability
Polycaprolactones	Used for shoe soles, under hood automotive applications and coatings
Castor Oil	Low viscosity, good retention with age

Polyurethane Hardeners

	TDI	MDI	HDI
Appearance	toxic	Pure MDI: Solid (flake, fused solid)	Very expensive
		MDI Adduct:	
		Liquid at RT, crystallizes below 60°F	
		Polymeric MDI: Dark Brown color, non- crystallizing	
Typical Max. Operating Temperatures,°C	125	125 - 150	150
Typical Pot life, hrs.	<1	<1	<1
General Uses	Foams	General purpose electronics casting	Optically clear (non- yellowing)
TDI = toluene diisocyante			

MDI = methylenebis(phenyl isocyanate)

HDI =hexamethylene diisocyanate

Silicones

- Approximately 30 products
- Predominantly 1K but some 2K available
- Hardness 30 (OO) to 80 (A)
- Gel time from 1hour to months
- Dk from 2 to 5
- Df from 0.002 to 0.2
- Dielectric strength up to 700volts/mil

- Cure mechanism either condensation cure or catalyst (addition cure)
- Some condensation cures systems are also known as RTVs (room temperature vulcanisation)

Silicones – comparison by cure

Cure Mechanism	By-product	Advantages	Disadvantages
Acetoxy	Acetic acid	High adhesion High temperature Fast cure	Corrosive Strong smell
Acetone	Acetone	Non-corrosive High adhesion High temperature Fast cure	Damaging to some plastics
Alkoxy/ Methoxy	Ethanol or Methanol	Non-corrosive High adhesion	Lower temperature Longer cure
Oxime	Methylethylketoxime	Non-corrosive High adhesion	Some H&S concerns
Addition	None	Non-corrosive High adhesion Fast cure	Catalyst can be poisoned

Resin Chemistry : Comparison

Characteristics	Ероху	Polyurethane	Silicone	Remarks
Service temperature (°C)	High (*) (up to 160-180°C)	Moderate (up to 135°C)	Very high (up to 230-260°C)	(*) depending on the selection of hardener
Thermal conductivity (W/mK)	0.2 (*)	0.2 (*)	0.2 (*)	(*) depending on the addition of filler
Tg (°C)	High	Medium / Low	Very low	
Hardness (shore)	High shore D	Shore A to shore D	Low shore A	
Flexibility	Brittle	Flexible (also low temp)	Very flexible (-50 / 200°C)	
Stress	High	Low	Very low	
Chemical resistance	Excellent	Good	Poor	
Adhesion	Very good	Good	Poor	
Cost	Medium	Low	High	

A filler is a substance often inert, added to a plastic material to improve properties and/or decrease cost.

Filler effects :

- Reduce cost
- Reduce exotherm
- Reduce thermal expansion coefficient
- Improve mechanical shock resistance
- Improve thermal or electrical conductivity
- Improve fire resistance

Fillers

Property	Improved Machining	Improved Thermal Conductivity	Improved Abrasion Resistance	Improved Impact Strength	Improved Electrical Conductivity	Improved Thixotropy	Flame retardant
Filler options	Calcium carbonate	Alumina	Glass	Mica	Noble Metals	Silica (colloidal)	Antimony trioxide
	Calcium silicate	Flint powder	Alumina	Silica	Aluminium	Clays	Borates
	Powdered aluminium	Carborundum		Glass	Carbon		Brominated organics
	Powdered copper	Silica					
	Micro balloons (microspheres)	Boron Nitride					

(Henke

Trade-off: Abrasiveness / Hardness of Fillers

One/Two component systems

One Components	Two Components
Ready for use	 Needs weighing and mixing
Limited shelf life	Long shelf life
Often requires cool storage	Room temperature storage
 Activation energy required to start reaction 	Room temperature cure or heat cure

Overview Potting systems

Overview encapsulant systems: Unfilled systems

Strengths	Weaknesses
Low viscosityClear transparent	 High shrinkage/brittle High CTE Higher exotherm than filled systems
	More expensive

Overview encapsulant systems: Mica filled systems

Strengths	Weaknesses
 Improved thermal shock resistance Less shrinkage 	Higher viscositySlightly abrasive
Good crack resistance	
Good chemical resistance	
 Good mechanical/electrical properties 	

Overview encapsulant systems: Calcium carbonate filled systems

Strengths	Weaknesses
Easy dispensable	Lower crack resistance
Highly machine-able	Lower thermal shock resistance
Low shrinkage	Poor acid resistance
Non-abrasive	
Low cost	

Overview encapsulant systems: Silica filled systems

Strengths	Weaknesses
 Excellent chemical resistance Good mechanical/electrical properties Low exotherm Low shrinkage/CTE 	 Abrasive Poor machine-ability High viscosity

Overview encapsulant systems: Aluminium oxide filled systems

Strengths	Weaknesses		
 Highest heat dissipation 	Highly abrasive		
High voltage applications	Poor machine-ability		
Excellent chemical resistance	High viscosity		
Low exotherm	Severe filler settlement		
 Good thermal cycle/shock 			
 Low shrinkage/CTE 			

Overview encapsulant systems: Aluminium Hydroxide filled systems

Strengths	Weaknesses		
Low exotherm	Low temperature resistance		
Good thermal shock/cycle	Poor acid resistance		
Flame retardant			
 Medium heat dissipation 			
Low shrinkage			

Overview encapsulant systems: Lightweight systems

Strengths	Weaknesses
Low density	High viscosity
Low dielectric constant	Filler "floating"
Low shrinkage	Fragile filler
Good thermal cycle resistance	
High compressive strength	
Good mechanical properties	

Potting Application techniques

Mix ratio:

The amount of hardener that is needed to stoichiometric cure 100 parts of resin

Cure time/temperature:

Time and temperature that a polymer system need to reach the solid state and its required end-properties

Principal Application Methods

Twin pack systems

Mixing and dosing equipment

Manual potting

- Small quantities
- Low investment
- Time depending on amount of material
- Pot life is crucial
- Exotherm
- De-gassing required

MixPacs

- Easy to use
- Simple volumetric mix ratios
- Designed for both small and large users
- Sales tools and help available

Mixing and Dosing Equipment

- Capital investment
- Mixing head: static or dynamic
- High throughput
- Material saving
- Maintenance required
- Abrasive fillers are critical

• Some pointers to help select the correct material for the application

- Maximum and minimum operating temperature
- Chemical resistance
- Physical properties
- Electrical properties
- Flame resistant
- Processing requirements

- Maximum and minimum operating conditions
 - Not only do you need to know the temperature extremes it is also important to ask:
 - How long will the part be exposed to the extreme conditions?
 - Continuous
 - Intermittent
 - Thermal shock (speed of change from one temperature to another)?
 - What are the CTEs of other materials in the assembly?

- Chemical resistance
 - What materials will the potting compound be exposed to during operating life?
 - Solvents
 - Inorganic acids/bases
 - Automotive fluids (gasoline, brake fluid, salt water, ATF, etc.)
 - Water
 - Will the fluids be under pressure?
 - Temperature and Duration

- Physical properties
 - Does the material need to provide inherent strength to the final assembly?
 - Does the material need to be impact resistant?
 - Does the material need to be re-workable?
 - Is colour important?

- Electrical properties
 - Is dielectric constant and dissipation factor important (and at what frequencies)?
 - Is dielectric strength important (and at what thickness)?
 - Is UL relative thermal index (RTI) important?

- Flame resistance
 - Is the final assembly UL approved or does the potting material need to be UL approved or both?
 - What level of flame retardancy is required?
 - UL capable or actually listed?

- Processing requirements
 - How many parts per hour are going to be produced?
 - How is the material going to be dispensed?
 - How fast does the cure process need to be?
 - What is the maximum allowable cure temperature?
 - Does the material need to flow through small gaps?
 - Does the material need to have controlled flow/thixotropy?
 - What is the volume of material per part (potential exotherm issues)?

- Summary
 - Finding a material that exactly meets all of the previous requirements is going to be very difficult if not impossible
 - It is therefore important to understand which parameters are critical to the success of the application and which are "would be nice" parameters – agree their priorities
 - For example:
 - Does the customer want an optically clear material because they are using LEDs or optical sensors
 - Or
 - Does the customer just want to know the potting application is giving good results
 - If the latter is the case it may be beneficial to work on proving the consistency of the potting application rather than pick something transparent

Henkel Potting Materials Product Line

Selection guide by operating temperature

		Potting					
Application status	New	Existing	Product Design Request				
General information							
Henkel sales person							
Customer name							
Ship-to Address							
Customer contact name							
Customer contact phone number							
Market segment							
Potential Value							
Potential Volume							
Sample quantity							
Process information				Indicate must criteria with X			
Application description (housing and inner parts) small gap filling							
required flow behaviour of product							
Potting volume in cc							
Product Environment - Operating temperature Range continous							
intermittent							
Desired Cure Method (Heat, RTV, UV, RT- 2part,)							
Max. cure time							
Max. cure temp.							
1 or Two-component acceptable							
Product properties							
Viscosity (mixed viscosity when 2K)							
Flame retardency, UL class							
Hardness							
Тд							
CTE coefficient of thermal expension							
High voltage requirements							
Product Environment - Fluid Exposure							
Product Environment - Thermal shock							
Available dispensing equipment (brand, type)							
Required electrical properties:							
Dielectric strength							
Dielectric constant							
Dissipation factor							
Volume/surface resistivity							
SIR (Surface Insulation Resistance)							
Other							
Other							
Other							
Current Supplier and product description							

